viernes, 7 de marzo de 2014

ARISTÓTELES, FÍSICA: LIBRO VI

LIBRO VI

1 El continuo como lo infinitamente divisible

231a Si la continuidad, el contacto y la sucesión son tales como los hemos definido antes —es decir, si decimos que son «continuas» aquellas cosas cuyos extremos son uno, «en contacto» cuando sus extremos están juntos, y «en sucesión» cuando no hay ninguna cosa del mismo género entre ellas—, entonces es imposible que algo continuo esté hecho de indivisibles, como, 25 por ejemplo, que una línea esté hecha de puntos, si damos por supuesto que la línea es un continuo y el punto un indivisible. Porque ni los extremos de los puntos pueden ser uno, ya que en un indivisible no puede haber un extremo que sea distinto de otra parte, ni tampoco pueden estar juntos, pues lo que no tiene partes no puede tener extremos, ya que un extremo es distinto de aquello de lo cual es extremo.
Además, si un continuo estuviera hecho de puntos, estos 30 puntos tendrían que ser necesariamente continuos entre sí o bien estar en contacto entre sí; el mismo razonamiento se puede hacer sobre todos los otros indivisibles. Pero, como ya se ha dicho, los puntos no pueden ser continuos. Y en 231b cuanto al contacto, dos cosas sólo pueden estar en contacto recíproco si el todo de una toca al todo de la otra, o si una parte de una toca a una parte de la otra, o si una parte de una toca el todo de la otra. Pero como los indivisibles no tienen partes, tendrían que tocarse entre sí como un todo con un todo. Ahora, si fuera como un todo que toca a un todo, no se trataría entonces de un continuo; porque lo que es continuo tiene partes distintas y puede ser divididos en 5 esas partes, que son entonces diferentes y están separadas en cuanto al lugar.
Tampoco un punto puede suceder a un punto, o un «ahora» a un «ahora», de tal manera que lo que resulte de ello sea una longitud o un tiempo; pues dos cosas están en sucesión si no hay entre ellas ninguna otra cosa del mismo género, pero entre dos puntos hay siempre una línea y entre 10 dos ahoras hay siempre un tiempo. Por lo demás, si de una sucesión de indivisibles pudiera resultar la longitud y el tiempo, éstos serían divisibles en indivisibles, ya que cada uno de estos (longitud o tiempo) sería divisible en aquello de que está hecho. Pero ningún continuo es divisible en cosas sin partes. Ni tampoco es posible que entre los puntos y entre los «ahoras» haya algo de otro género; porque si lo hubiese, es claro que tendría que ser o indivisible o divisible; y si fuera divisible, tendría que serlo o en indivisibles o 15 en divisibles que fuesen siempre divisibles; y esto último sería justamente el continuo.
Es evidente que todo continuo es divisible en partes que son siempre divisibles; porque si fuese divisible en partes indivisibles, un indivisible estaría en contacto con un indivisible, ya que los extremos de las cosas que son continuas entre sí son uno y están en contacto.
Por esa misma razón también la magnitud, el tiempo y el movimiento o bien están compuestos de indivisibles y se 20 dividen en indivisibles o bien no lo están. Esto se aclara así. Si una magnitud estuviera compuesta de indivisibles, también el movimiento sobre esa magnitud tendría que estar compuesto de los correspondientes movimientos indivisibles; por ejemplo, si la magnitud ABC estuviera compuesta de los indivisibles A, Β y C, el movimiento LMN de X sobre ABC tendría como partes a L, Μ y N, cada una de las 25 cuales sería indivisible. Por consiguiente, ya que cuando hay movimiento tiene que haber algo que esté en movimiento, y cuando hay algo en movimiento tiene que haber movimiento, entonces lo que está en movimiento también estaría compuesto de indivisibles. Así, la cosa X se habría movido sobre A con el movimiento L, sobre Β con el movimiento M, y de la misma manera sobre C con el movimiento N.

Ahora, una cosa que está en movimiento de un lugar a otro en el momento en que lo está no es posible que esté en movimiento y al mismo tiempo haya completado su movimiento en el lugar hacia el cual se estaba 30 moviendo (por ej., si un hombre se encamina hacia Tebas, es imposible que esté caminando hacia Tebas y al mismo tiempo haya completado su camino hacia Tebas). Pero X estaba 232a moviéndose sobre la sección indivisible A en virtud de su movimiento L. Luego, si X pasó realmente a través de A después de que estaba pasando, el movimiento tendrá que ser divisible; porque cuando X estaba pasando, no estaba en reposo ni había completado su paso, sino que estaba en un estado intermedio. Pero si cuando X se estaba moviendo al mismo tiempo hubiera completado su movimiento, habría llegado al término del movimiento y estaría moviéndose 5 hacia él: el que está caminando en el momento en que está caminando habría completado su camino y estaría en el lugar hacia el cual estaba caminando. Y si se moviese sobre la totalidad de ABC y su movimiento estuviese compuesto de L, Μ y N, y si no se hubiese movido sobre A, que no tiene partes, sino que hubiera completado su movimiento sobre esa sección, entonces el movimiento no estaría hecho de movimientos actuales sino de movimientos ya cumplidos, y la cosa tendría que haberse movido sobre algo sin estar 10 moviéndose sobre ello; pues, según este supuesto, habría pasado sobre A sin pasar a través de A. Así, sería posible que alguien hubiera completado el camino sin haber estado caminando jamás, porque según ese supuesto habría caminado sobre una determinada distancia sin caminar sobre esa distancia.
Así pues, si necesariamente toda cosa está o bien en reposo o bien en movimiento, y si está en reposo en cada una de las partes de ABC, entonces se sigue que podrá estar continuamente en reposo y a la vez en movimiento; porque, como hemos dicho, estará en movimiento sobre la totalidad de ABC, pero en reposo sobre cualquiera de sus partes y por 15 tanto sobre el todo. Y si las partes indivisibles de LMN son movimientos, entonces una cosa podría estar en reposo aunque el movimiento estuviese presente en ella; y si no son movimientos, entonces un movimiento no podría estar compuesto de movimientos.
Y así como la longitud y el movimiento, también sería necesario que el tiempo fuera indivisible y que estuviera compuesto de «ahoras» que fuesen indivisibles. Porque si 20 todo movimiento es divisible y si una cosa en movimiento con una velocidad igual recorre una distancia menor en un tiempo menor, entonces el tiempo también será divisible. Pero, si el tiempo es divisible durante el desplazamiento de una cosa sobre A, también A tendrá que ser divisible.

2 Continuidad del tiempo y de la extensión Controversia con Zenón. Divisibilidad del continuo

Puesto que toda magnitud es divisible en magnitudes (porque, como hemos mostrado, toda magnitud es continua y es imposible que algo continuo esté compuesto de indivisibles), se sigue necesariamente 25 que, de dos cuerpos en movimiento, el más rápido recorrerá una distancia mayor en un tiempo igual, una distancia igual en un tiempo menor y una distancia mayor en un tiempo menor. Algunos han definido lo más rápido en estos términos. Así, supongamos que A es más rápido que B. Entonces, como el más rápido es el que cambia antes, si A ha cambiado de M1 a M4 en el tiempo T1T4, Β no habrá 30 llegado todavía a M4, aunque estará cerca; así, en un tiempo igual el más rápido recorre una distancia mayor. Pero también en un tiempo menor el más rápido recorrerá una distancia mayor, porque cuando A haya llegado a M4, el cuerpo más lento Β habrá llegado a M2; entonces, como A ha ocupado 232b todo el tiempo T1T4 para llegar a M3 ocupara un tiempo menor, digamos T1T3. Así pues, dado que la distancia M1M4 recorrida por A es mayor que la distancia M1M2, y el tiempo T1T3 es menor que el tiempo total T1T4, el cuerpo más rápido recorrerá una distancia mayor en un tiempo menor.
5 Es también evidente, según lo anterior, que el cuerpo más rápido recorrerá una distancia igual en menos tiempo. Pues, como recorre una distancia mayor en menos tiempo que el más lento, y como considerado en sí mismo recorre una distancia mayor, digamos M1M3, en más tiempo que para una distancia menor, digamos M1M2, el tiempo T1T3 que ocupa para recorrer M1M3 es mayor que el tiempo T1T2
10 que ocupa para recorrer M1M2. Por lo tanto, si el tiempo T1T3 es menor que el tiempo T1T4 ocupado por el cuerpo más lento en recorrer M1Μ2 entonces T1T2 será también menor que el tiempo T1T4; pues T1T2 es menor que T1T3, y lo que es menor que lo menor tiene que ser también menor que lo mayor entre dos cosas. Por consiguiente, el más rápido recorrerá una distancia igual en un tiempo menor.
15 Además, si todo cuerpo tiene que moverse sobre una distancia en un tiempo o igual o menor o mayor que otro, y uno es más lento que otro si se mueve en un tiempo mayor, se mueve a una velocidad igual a la del otro si lo hace en un tiempo igual, y si el más rápido que el otro no lo hace a una velocidad igual ni es más lento que el otro, entonces el más rápido no se moverá en un tiempo igual ni mayor que el otro. Sólo puede ocurrir entonces que se mueva en un tiempo menor; por lo tanto, si es más rápido tendrá que recorrer 20 una distancia igual en menos tiempo.
Pero, puesto que todo movimiento es en el tiempo y en todo tiempo algo puede estar en movimiento, y puesto que todo lo que está en movimiento puede moverse más rápidamente o más lentamente, en todo tiempo podrá haber un movimiento más rápido o más lento. Si esto es así, es también necesario que el tiempo sea continuo. Entiendo por «continuo» lo que es divisible en divisibles siempre divisibles; 25  y si se da por sentado que esto es la continuidad, entonces el tiempo tiene que ser necesariamente continuo. Así, ya que se ha mostrado que el cuerpo más rápido recorre en un tiempo más breve que el más lento una distancia igual, supongamos que A sea el más rápido y Β el más lento, y que el más lento recorra la distancia M1M3 en el tiempo T1T3. Es manifiesto entonces que el más rápido recorrerá la 30 misma distancia en menos tiempo, y sea este tiempo T1T2. Como el más rápido recorre la totalidad de M1M3 en el tiempo T1T2, en este tiempo el más lento recorrerá una distancia menor, y sea ésta M1M2. Y cuando B, que es más 233a lento, recorre en el tiempo T1T2 la distancia M1M2, el más rápido en menos tiempo, y así una vez más el tiempo T1T2 tendrá que ser dividido. Pero si es dividido, también la distancia M1M2 tendrá que ser dividida en la misma proporción. Y si la distancia es dividida, también el tiempo será 5 dividido. Y esto ocurrirá siempre, tanto si se procede del más rápido al más lento como si se procede del más lento al más rápido y utilizamos la misma demostración, pues el más rápido dividirá el tiempo y el más lento dividirá la longitud. Y puesto que se puede proceder indefinidamente con esta reciprocidad y en cada caso se sigue una división, es evidente que todo tiempo será continuo. Y a la vez es 10 también claro que toda magnitud será continua, ya que el tiempo y magnitud son divididos según las mismas e iguales divisiones.
Además, también según la manera habitual de razonar resulta evidente que si el tiempo es continuo también es continua la magnitud, ya que se recorre la mitad de la distancia 15 en la mitad del tiempo que se ocupa para recorrer el todo, o dicho en general en menos tiempo se recorre menos distancia; pues las divisiones del tiempo y la magnitud son las mismas, y si cualquiera de los dos es infinito también lo será el otro. Y de la misma manera en que uno es infinito así lo será también el otro; por ej., si el tiempo es infinito con respecto a su extremos, así también lo será la longitud; 20 si el tiempo es infinito con respecto a la división, así también lo será la longitud; y si el tiempo es infinito en ambos respectos, la magnitud será también infinita en ambos respectos.
De ahí que sea falsa la argumentación de Zenón al suponer que los infinitos no pueden ser recorridos o que no es posible tocar una a una un número infinito de partes en un tiempo finito. Porque tanto la longitud como el tiempo, y en general todo continuo, se dice que son infinitos de dos maneras: o por división o por sus extremos. Ciertamente, no 25 es posible durante un tiempo finito tocar cosas que sean infinitas por su cantidad, pero se las puede tocar si son infinitas por su división, porque en este sentido el tiempo mismo es infinito. Así, el tiempo en el que es recorrida una magnitud no es finito sino infinito, y las infinitas cosas no 30 son tocadas en un tiempo finito sino en infinitos intervalos de tiempo.
Es, pues, imposible que una magnitud infinita sea recorrida en un tiempo finito, o una magnitud finita en un tiempo infinito. Si el tiempo es infinito, también la magnitud será infinita, y si lo es la magnitud también lo será el tiempo. Esto puede ilustrarse de la siguiente manera. Sea AM una magnitud finita, Τ un tiempo infinito, y sea T1T2 una 35 parte finita del tiempo T. En esta parte del tiempo lo que 233b está en movimiento recorrerá una parte de la magnitud, supongamos AB; y esta parte será la medida exacta de AM o será menor o la superará, poco importa la diferencia. Pues bien, si en un tiempo igual se recorre una magnitud igual a AB, y si la magnitud AB es la medida de la magnitud total AM, entonces el tiempo ocupado en recorrer AM será finito, 5 porque será divisible en partes iguales en número a las partes es que es divisible la magnitud. Además, si no se recorre una magnitud total en un tiempo infinito, sino que es posible recorrer en un tiempo finito alguna magnitud, supongamos AB, y si AB es la medida del todo del cual es 10 parte, y si se recorre una magnitud igual en un tiempo igual, entonces se sigue que el tiempo será finito. Que para recorrer la magnitud AB no hace falta un tiempo infinito es evidente si tomamos el tiempo <de ese movimiento> como limitado en una dirección <es decir, en el comienzo; porque si la parte es recorrida en menos tiempo que el todo, entonces el tiempo más breve, al estar limitado en una dirección, tendrá que ser finito. El mismo razonamiento mostrará también la falsedad del supuesto de que la longitud a 15 recorrer pueda ser infinita y el tiempo finito.
Es evidente, entonces, después de lo que se ha dicho, que ni una línea ni una superficie ni, en general, nada que sea continuo puede ser indivisible. Esta conclusión se sigue no sólo de la anterior argumentación, sino también porque si fuese de otra manera se seguiría la divisibilidad de los indivisibles. Porque como en cualquier intervalo de tiempo puede haber movimientos más rápidos y más lentos, y en un 20 tiempo igual el más rápido recorrerá una longitud mayor, puede ocurrir que éste recorra una longitud doble o una vez y media más grande que la recorrida por el más lento (pues ésta podría ser la proporción de sus velocidades correspondientes). Supongamos, entonces, que en el mismo tiempo el más rápido recorre una magnitud una vez y media más grande que la recorrida por el más lento, y que la magnitud recorrida por el más rápido sea dividida en las tres partes 25 indivisibles AB, BC y CD, y la recorrida por el más lento en dos partes indivisibles, EF y FG. En tal caso también el tiempo se dividirá en tres partes indivisibles, ya que una magnitud igual tiene que ser recorrida en un tiempo igual; y sean estas tres partes T1T2, T2T3 y T3T4. Pero, como durante el mismo tiempo el cuerpo más lento ha recorrido EF y FG, el mismo tiempo será dividido también en dos partes. Luego lo indivisible (T2T3) será dividido, y lo que no tiene partes 30 (EF) no será recorrido por el cuerpo más lento en un tiempo indivisible, sino en un tiempo mayor. Así pues, es evidente que no hay ningún continuo que carezca de partes.

3 El «ahora» es indivisible y en él no hay movimiento

El «ahora», considerado en sí mismo y primariamente, no en sentido derivado <es decir, como un lapso de tiempo, es también necesariamente indivisible, y como tal es inherente a todo tiempo. Pues 35 el «ahora» es de algún modo el límite extremo del pasado y 234a en él no hay nada del futuro, y es también el límite extremo del futuro y en él no hay nada del pasado; justamente por eso decimos que es el límite de ambos. Cuando se haya mostrado que es en sí tal como lo describimos, y que es uno y el mismo, quedará de manifiesto también que el «ahora» es indivisible.
5 El «ahora», en cuanto extremo de ambos tiempos, tiene que ser uno y el mismo, porque si cada extremo fuese distinto no podrían estar en sucesión, ya que ningún continuo puede estar hecho de lo que carece de partes. Υ si los dos extremos del tiempo estuviesen separados, habría un tiempo intermedio entra ambos, porque todo lo que es continuo es de tal manera que tiene que contener algo de la misma denominación 10 entre sus extremos.
Pero si lo que hay entre ellos es tiempo, tendrá que ser divisible, porque ya se ha mostrado que todo tiempo es divisible. Por consiguiente, el «ahora» sería divisible. Pero si fuese divisible, habría una parte del pasado en el futuro y una parte del futuro en el pasado, pues el punto en el que el «ahora» fuese dividido marcaría el límite del tiempo pasado y del tiempo futuro. Pero, si así fuera, no estaríamos hablando propiamente del 15 «ahora» en sí, sino de un «ahora» en sentido derivado <es decir, como un lapso de tiempo>, pues la división no sería propiamente una división. Además, habría una parte del «ahora» que sería pasado y otra que sería futuro, y no siempre la misma parte sería pasado o futuro; tampoco el «ahora» sería el mismo, pues el tiempo es divisible en múltiples puntos. Por consiguiente, si es imposible que el «ahora» tenga esas características, tendrá que haber un mismo «ahora» que limite a cada uno de los dos tiempos. Pero, 20 si es así, es evidente que el «ahora» tiene que ser indivisible, porque si fuera divisible se seguiría lo que antes hemos indicado. Es claro, entonces, después de lo dicho, que en el tiempo hay algo indivisible que llamamos «ahora».
Y es evidente también que en el «ahora» nada puede estar en movimiento. Porque si fuera posible, podría haber 25 en un mismo «ahora» un movimiento más rápido y otro más lento. Así, supongamos que este «ahora» sea M, y que el movimiento más rápido recorra la longitud AC en el «ahora» M. Entonces, en ese mismo «ahora» el más lento recorrerá una longitud menor que AC, digamos AB. Y como el más lento se ha movido sobre AB en la totalidad del 30 «ahora» M, el más rápido tardará menos en recorrerlo. Habría, entonces, una división del «ahora». Pero es indivisible, como hemos mostrado. Luego es imposible que algo esté en movimiento en un «ahora».
Pero tampoco puede haber algo que esté en reposo en un «ahora». Porque, como hemos dicho, una cosa está «en reposo» sólo si puede estar naturalmente en movimiento, aunque no esté en movimiento cuando, donde y como naturalmente lo estaría. Luego, puesto que nada puede estar en movimiento en un «ahora», es claro que tampoco podrá estar en reposo en un «ahora».
35 Además, si <en cuanto limito el «ahora» es el mismo para los dos tiempos <pasado y futuro, y si es posible que 234b una cosa esté en movimiento durante un tiempo y en reposo durante otro, y si lo que está en movimiento en la totalidad de un tiempo lo estará en una parte cualquiera de ese tiempo en el que puede naturalmente estar en movimiento <es decir, también en el fin>, y si también lo que está en reposo lo estará tanto en la totalidad del otro tiempo como una parte cualquiera suya <es decir, también en el comienzo>, entonces resultará que una misma cosa podría estar a la vez en 5 movimiento y en reposo, ya que el límite de ambos tiempos es uno y el mismo: el «ahora».
Además, decimos que una cosa está en reposo cuando, tanto en su totalidad como en sus partes, está «ahora» en el mismo estado en que estaba antes; pero en el «ahora» no hay «antes»; luego tampoco hay reposo.
Así pues, necesariamente lo que está en movimiento sólo puede moverse en el tiempo y lo que está en reposo sólo puede reposar en el tiempo.

4 Continuidad y divisibilidad del cambio

Todo lo que cambia tiene que ser divisibles. 10 Porque como todo cambio es desde algo hacia algo, y cuando una cosa está en aquello hacia lo cual ha cambiado no cambia ya más, y cuando está en aquello desde lo cual cambia, tanto en sí mismo como en todas sus partes, la cosa todavía no cambia (porque lo que está en una misma condición, tanto en sí mismo como en sus partes, no está cambiando), se sigue entonces que la 15 cosa que cambia tiene que estar parcialmente en aquello hacia lo cual cambia y parcialmente en aquello desde lo cual cambia (ya que no es posible que lo que está cambiando esté enteramente en ambos o no esté en ninguno). Entiendo por «aquello hacia lo cual cambia» lo que primero se presenta en el proceso de cambio, por ejemplo, el gris, no el negro, si el cambio es desde el blanco (pues no es necesario que lo que está cambiando esté en uno u otro de sus extremos). 20 Es, pues, evidente que todo lo que cambia tiene que ser divisible.
El movimiento es divisible de dos maneras: según el tiempo y según los movimientos de las partes de lo que está en movimiento. Por ejemplo, si el todo AC está en movimiento, también sus partes AB y BC estarán en movimiento. Supongamos que el movimiento de la parte AB sea M1M2 y que el de parte BC sea M2M3; entonces M1M3 será el movimiento 25 total de la cosa AC, pues AC estará moviéndose con este movimiento total sólo si cada una de sus partes está moviéndose con su movimiento respectivo; ninguna parte se mueve con el movimiento de la otra. Así, el movimiento total es el movimiento de la magnitud total de una cosa. Además, si todo movimiento es un movimiento de algo, 30 y si el movimiento total M1M3 no puede ser el movimiento de ninguna de las partes (pues AB tiene el movimiento M1M2 y BC tiene el movimiento M2M3), ni de ninguna otra cosa (pues si el movimiento total es el movimiento de una cosa total, entonces las partes de ese movimiento serán respectivamente las partes de esa cosa; y las partes de M1M3 serán movimientos de las partes AB y BC, y de ninguna otra cosa; pues, como hemos visto, un movimiento singular no puede ser movimiento de muchas cosas), resultará entonces que el movimiento total M1M3 será el movimiento de la magnitud AC de la cosa.
35 Además, si el movimiento del todo AC tuviese otro movimiento que M1M3, supongamos N1N3, podría sustraérsele el movimiento de cada una de sus partes; y estos movimientos 235a serían entonces iguales a M1M2 M2M3, respectivamente, pues el movimiento de lo que es uno tiene que ser uno. Por lo tanto, si el movimiento total N1N3 fuese dividido en los movimientos de sus partes, N1N3 sería igual a M1M3; pero si hubiese un resto, supongamos N3N4, éste no sería movimiento de nada, pues no podría ser el movimiento 5 del todo ni de alguna de las partes, ya que el movimiento de lo que es uno tiene que ser uno, ni de ninguna otra cosa, porque un movimiento continuo tiene que ser movimiento de cosas que sean continuas. Y el mismo resultado se seguiría si por división los movimientos de las partes excediesen al movimiento M1M3. Por consiguiente, si estas consecuencias son imposibles, el movimiento total N1N3 tendrá que ser igual e idéntico a M1M3.
Tal es, pues, la división del movimiento según los movimientos de las partes, y así tendrá que ser la división de 10 toda cosa que sea divisible en partes.
Pero el movimiento es susceptible de otra división, la que se hace según el tiempo. Porque, como todo movimiento es en el tiempo y todo tiempo es divisible, y como en menor tiempo el movimiento será menor, se sigue que todo movimiento tiene que ser divisible según el tiempo. Y puesto que todo lo que está en movimiento se mueve con respecto a algo y durante un cierto tiempo, y que el movimiento es de toda la cosa movida, se sigue que las divisiones 15 tienen que ser las mismas para 1) el tiempo, 2) el movimiento, 3) el estar en movimiento, 4) la cosa en movimiento y 5) aquello respecto de lo cual hay movimiento (aunque aquello respecto de lo cual hay movimiento no es divisible de la misma manera; pues el lugar es divisible esencialmente, pero la cualidad sólo accidentalmente). Así, supongamos que A sea el tiempo en el que una cosa se 20 mueve, y que Β sea el movimiento. Entonces, si en el tiempo total una cosa cumple la totalidad del movimiento, en la mitad del tiempo se cumplirá un movimiento menor, que será aún menor si el tiempo es dividido de nuevo, y así indefinidamente. Y así corno es divisible el movimiento también lo es el tiempo; porque si el movimiento total se cumple en la totalidad del tiempo, la mitad del movimiento se cumplirá en la mitad del tiempo, y una parte más pequeña de movimiento se cumplirá en un tiempo todavía más breve.
25 Y el «estar en movimiento» será también divisible de la misma manera. Así, llamemos C al estar en movimiento Entonces, el estar en movimiento que corresponda a la mitad del movimiento será menor que C con un todo, y será todavía menor con respecto a la mitad de la mitad del movimiento, y así indefinidamente. Podemos también considerar el estar en movimiento según dos movimientos parciales, 30 digamos M1M2 M2M3, a fin de mostrar que el movimiento total corresponderá a la totalidad del proceso de estar en movimiento, pues, si no fuese así, habría más de un estar en movimiento con respecto a un mismo movimiento, como en el caso de un movimiento divisible, que ya se mostró antes que es divisible en los movimientos de las partes de la cosa en movimiento. Porque si consideramos cada estar en movimiento en correspondencia con cada uno de los dos movimientos, veremos que la totalidad del proceso del estar en movimiento será continuo.
De la misma manera se puede mostrar que también la longitud es divisible, y que en general es divisible todo 35 aquello en lo que se cumple el cambio (aunque en algunos casos se trata sólo de una división por accidente, ya que lo divisible es sólo la cosa que cambia); porque si uno de los elementos del movimiento es divisible, lo serán también todos los demás.
Y en cuanto a que sean finitos o infinitos, todos los 235b elementos del movimiento serán de la misma manera finitos o infinitos. Pero que sean divisibles o infinitos es sobre todo una consecuencia de la divisibilidad o infinitud de la cosa que cambia, pues la divisibilidad y el infinito pertenecen inmediatamente a lo que cambia. Ya se ha mostrado antes esta divisibilidad; la infinitud será aclarada más adelante.

5 Los términos inicial y final del cambio

5 Puesto que todo lo que cambia lo hace desde algo hacia algo, es necesario que lo que haya cambiado, cuando haya cambiado primero, esté en aquello hacia lo cual ha cambiado. Porque lo que cambia sale de aquello desde lo cual cambia y lo deja; este dejar, o 10 bien es idéntico con el cambiar, o bien le acompaña. Y si el apartarse acompaña al cambiar, el haber dejado acompaña al haber cambiado, porque hay una relación similar entre ambos en cada caso.
Y puesto que uno de los cambios es el cambio por contradicción, cuando una cosa haya cambiado desde el no 15 ser al ser habrá abandonado el no ser; luego estará en el ser, porque necesariamente toda cosa o es o no es. Es evidente, entonces, que en el cambio por contradicción lo que ha cambiado tiene que estar en aquello hacia lo cual ha cambiado. Y si eso es así en esta clase de cambio, así también será en los otros; pues lo que decimos para uno es también válido para los otros.
Además, esto resulta evidente si consideramos en particular 20 cada clase de cambio, ya que lo que ha cambiado tiene que estar en alguna parte o en alguna cosa. Porque, como la cosa ha dejado aquello desde lo cual ha cambiado y tiene que estar necesariamente en alguna parte, tendrá que estar en aquello hacia lo cual ha cambiado o en alguna otra cosa. Por ejemplo, si la cosa que cambia a C está en algo distinto de C, supongamos en B, entonces tendrá que cambiar de nuevo de Β a C, pues estamos suponiendo que C no es contiguo a B, ya que el cambio es continuo. Y así resultaría que la cosa que ha cambiado, en el momento en que 25 haya cambiado, estaría cambiando hacia aquello a que ha cambiado. Pero como esto es imposible, es necesario que lo que ha cambiado esté en aquello hacia lo cual ha cambiado.
Y es evidente que también lo que ha sido generado, cuando la generación se ha cumplido, «es», y lo que ha sido destruido, cuando la destrucción se ha cumplido, «no es». Pues lo que hemos dicho en general sobre toda clase de cambio es sobre todo evidente en los cambios por contra- 30 dicción. Queda claro, entonces, que lo que ha cambiado, en el momento en que ha cambiado primero, está en aquello hacia lo cual ha cambiado.
En lo que respecta el cuando primero en el cual lo que ha cambiado ha cumplido su cambio, tiene que ser necesariamente indivisible (y entiendo por «primero» lo que no es tal en virtud de que algo distinto sea primero). Así, supongamos 35 que AC (el «cuando» primero) sea divisible en B. Entonces, si el cambio se ha cumplido en AB o bien en BC, AC no podrá ser aquello en lo que primero se ha cumplido el cambio. Y si estuviese cambiando en cada uno (pues en 236a cada uno tiene que haber cambiado o bien haber estado cambiando), tendrá que estar cambiando también en todo AC; pero habíamos supuesto que el cambio ya se había cumplido en AC. El argumento sería el mismo incluso en el caso de que la cosa estuviese cambiando en una parte y en la otra hubiese cumplido el cambio, porque entonces habría algo anterior a lo que es primero. Por consiguiente, aquello 5 en lo cual se ha cumplido el cambio no puede ser divisible. Y es también evidente que es indivisible aquello en lo cual lo destruido ha sido destruido o lo generado ha sido generado.
Ahora bien, la expresión «el cuando primero en el que algo ha cambiado» puede entenderse en dos sentidos: a) como aquello en lo que primariamente se cumplió el cambio (pues sólo entonces se puede decir con verdad que la cosa ha cambiado), y b) como aquello en lo que primariamente comenzó a cambiar. Con respecto al fin del cambio, lo que 10 llamamos primer «cuando» existe realmente y es; pues un cambio puede realmente ser completado y hay un fin del cambio, y se ha mostrado que este fin es indivisible por ser un límite. Pero con respecto al comienzo no lo hay en absoluto, pues no hay un comienzo del cambio ni hay un primer 15 «cuando» en el que comenzó el cambio. Pues, supongamos que BC sea ese primer «cuando». BC no podrá ser entonces indivisible, porque, si lo fuera, el «ahora» en el que el cambio comienza tendría que ser contiguo con el «ahora» precedente. Además, si la cosa estaba en reposo en todo el tiempo precedente A (pues estamos suponiendo que lo estaba), habrá estado también en reposo en B. Por lo tanto, si BC carece de partes, simultáneamente estará 20 en reposo y habrá cambiado, pues estaba en reposo en Β y en C había cambiado. Pero como BC no carece de partes, tendrá que ser divisible y lo que cambia tendrá que haber cambiado en alguna de sus partes. Porque cuando BC sea dividido, si la cosa no hubiese cambiado en ninguna de las dos partes, no habría cambiado en el todo; y si estuviese cambiando en ambas, estaría cambiando también en el todo; pero si hubiese cambiado en una de las dos partes, el todo no sería entonces el primer «cuando» en el que hubiese 25 cambiado; por lo tanto, es preciso que el cambio se haya producido en alguna parte de BC. Así pues, es evidente que con respecto al comienzo del cambio no hay un primer «cuando» en el cual algo haya cambiado, pues las divisiones son infinitas.
Ni tampoco en la cosa que ha cambiado hay una primera parte que haya cambiado. Pues, supongamos que en DF la primera parte que haya cambiado sea DE (puesto que, como se ha mostrado antes, todo lo que cambia es divisible), y que 30 sea T/T2 el tiempo en el que DE haya cambiado. Entonces, si DE ha cambiado en la totalidad de ese tiempo, en la mitad de ese tiempo tendrá que haber una parte menor que DE que habrá cambiado antes, y asimismo una parte de esa parte que lo habrá hecho antes, e incluso otra menor que ésta, y así hasta el infinito. Por consiguiente, no podrá haber en la cosa que cambia una primera parte que haya cambiado. Es evidente, entonces, después de lo que se ha dicho, que ni en 35 la cosa que cambia ni en el tiempo en el cual cambia puede haber una parte primera en la que se efectúe el cambio.
Pero no ocurre lo mismo con aquello mismo que cambia, 236b es decir, con aquello según lo cual algo está cambiando. Pues en un cambio podemos distinguir tres términos: la cosa que cambia (por ej., el hombre), el tiempo en el cual cambia (su duración) y aquello hacia lo cual cambia (por 5 ej., lo blanco). El hombre y el tiempo son divisibles, pero lo blanco no lo es, salvo que hablemos de una divisibilidad accidental; porque lo que es divisible es aquello de lo cual la blancura o alguna otra cualidad es un atributo. En todas las cosas que se dicen esencialmente divisibles, no por accidente, 10 por ej., en las magnitudes, no hay una parte primera. Así, supongamos que AB sea una magnitud que se haya movido de Β a un primer «donde» C. Entonces, si BC fuera indivisible, habría dos cosas carentes de partes que serían contiguas. Pero si BC fuese divisible, tendría que haber algo anterior a C hacia el cual habría cambiado la magnitud AB, y antes tendría que haber otro, y así hasta el infinito, porque 15 el proceso de división no puede agotarse jamás. Por consiguiente, no puede haber un primer «dónde» hacia el cual la cosa cambie. Y si consideramos el cambio cuantitativo llegaremos a un resultado similar, puesto que también es este caso el cambio se produce en algo continuo. Es evidente, entonces, que sólo en los movimientos cualitativos puede haber algo que sea esencialmente indivisible.

6 Un continuo no es indivisible en partes primeras

Puesto que todo lo que cambia cambia en el tiempo, y se dice que cambia en 20 el tiempo si cambia en un tiempo primero o bien con respecto a otro tiempo (como cuando dice que algo ha cambiado en un determinado año porque cambia en algún día de ese año), entonces es necesario que lo que cambia cambie en alguna parte del tiempo primero en el cual cambia. Esto es evidente por definición (según lo que hemos dicho antes sobre «primero»), y resultará también evidente por las siguientes consideraciones.
25 Supongamos que AC sea el tiempo primero en el que una cosa está en movimiento y que, como todo tiempo es divisible, AC esté dividido en B. Entonces en el tiempo AB la cosa está en movimiento o no lo está, y lo mismo en el tiempo BC. Y si no estuviese en movimiento en ninguna de las dos partes, estaría en reposo en el todo, pues es imposible que esté en movimiento en el todo lo que no se mueve 30 en ninguna de las dos partes del tiempo. Y si estuviese en movimiento sólo en una de las dos partes, entonces AC no sería el tiempo primero en el que está en movimiento, porque en tal caso su movimiento se produciría en relación a un tiempo distinto que AC. Por lo tanto, tendrá que estar en movimiento en alguna parte del tiempo primero AC.
Demostrado esto, es evidente que todo lo que está en movimiento tiene que haberse movido ya antes. Porque, si en el tiempo primero AC la cosa ha estado en movimiento 35 sobre la magnitud PQ, entonces en la mitad de ese tiempo otra cosa que hubiese partido simultáneamente y se moviese a la misma velocidad habría recorrido la mitad de esa 237a magnitud. Y si esta cosa cuya velocidad es igual ha recorrido una cierta magnitud en un cierto tiempo, también la primera cosa tendrá que haber recorrido la misma magnitud en el mismo tiempo. Luego lo que está en movimiento tiene que  haberse movido ya antes.
Además, si lo que nos permite decir que una cosa se ha movido en la totalidad del tiempo AC, o en cualquier otro tiempo, es el hecho de tomar el extremo de ese tiempo, a 5 saber, un «ahora» (pues el «ahora» es lo que delimita el tiempo, y lo que se encuentra entre dos «ahoras» es tiempo), entonces también se podrá decir que la cosa ha cumplido su movimiento en las otras partes del tiempo. Pero el punto de división es el extremo de una mitad del tiempo. Por lo tanto, la cosa se habrá movido en la mitad del tiempo o en una cualquiera de sus partes, pues siempre que se hace una división hay un tiempo delimitado por «ahoras». Así pues, si 10 todo tiempo es divisible y si lo que se encuentra entre dos «ahoras» es tiempo, entonces todo lo que esté cambiando tendrá que haber cumplido un número infinito de cambios.
Además, si lo que está cambiando continuamente, sin que se haya destruido ni haya cesado de cambiar, es necesario que esté cambiando o que haya cambiado en alguna parte del tiempo de su cambio, y si no es posible cambiar en un «ahora», se sigue entonces que la cosa cambiante tendrá 15 que haber cambiado en cada uno de los «añoras». Por consiguiente, como los ahoras son infinitos, todo lo que esté cambiando tendrá que haber cambiado un número infinito de veces.
Pero no sólo es preciso que lo que esté cambiando tenga que haber cambiado antes, sino que también lo que ha cambiado tiene que haber estado cambiando previamente, pues todo lo que ha cambiado de algo a algo ha cambiado en el tiempo. Pues supongamos que una cosa haya cumplido 20 el cambio de A a Β en un «ahora». Entonces, el «ahora» en el que está en A no puede ser el mismo que el «ahora» en el que ha cambiado, pues en tal caso estaría simultáneamente en A y en B; porque, como se ha mostrado antes, lo que ha cambiado, cuando ya ha cambiado, no está ya en aquello desde lo cual ha cambiado. Y si ha hecho el cambio en otro «ahora», tendrá que haber un tiempo intermedio entre ambos, pues, como hemos visto, los «ahoras» no puede ser 25 contiguos. Así, puesto que ha cambiado en un tiempo, y todo tiempo es divisible, en la mitad de tal tiempo la cosa tendrá que haber cumplido otro cambio, e incluso otro en la mitad de la mitad, y así hasta el infinito; por consiguiente, la cosa tendrá que haber estado cambiando antes de haber cambiado.
Además, cuanto se ha dicho se hace todavía más evidente en el caso de la magnitud, porque la magnitud sobre la 30 cual cambia lo que está cambiando es continua. Supongamos que una cosa haya cambiado de C a D. Entonces, si CD fuese indivisible, una cosa sin partes sería contigua a otra sin partes. Pero como esto es imposible, lo que haya entre C y D tendrá que ser una magnitud, y, por tanto, tendrá que ser divisible en un número infinito de magnitudes. Por consiguiente, la cosa tendrá que haber estado cambiando antes en cada una de estas magnitudes. Así, todo lo que haya cambiado tiene que haber estado antes cambiando. Y la 35 misma demostración vale también para lo que no es continuo, 237b por ejemplo para los cambios entre contrarios y entre contradictorios, pues en estos casos podemos considerar el tiempo en que la cosa ha cumplido el cambio y aplicarle una vez más el mismo argumento de la infinita divisibilidad.
Por consiguiente, lo que ha cambiado tiene que haber estado cambiando y lo que está cambiando tiene que haber cambiado: el cumplimiento del cambio (el «haber cambiado») es anterior al proceso de cambio (al «cambiar» o «estar 5 cambiando») y a su vez el proceso es anterior al cumplimiento: jamás podremos captar cuál de los dos es el primero. La razón de esto está en el hecho de que dos cosas sin partes no pueden ser contiguas, pues la división puede proceder hasta el infinito, como en el caso de la línea, que puede aumentar o disminuir por división.
Por lo tanto, es también evidente que una cosa divisible 10 y continua que ha llegado a ser tendrá que haber estado antes llegando a ser, y que una cosa divisible y continua que está llegando a ser antes tendrá que haber llegado a ser, aunque no siempre se trata de la cosa misma que está llegando a ser, sino a veces de algo distinto, por ejemplo de alguna de sus partes, como en el caso de la primera piedra de una casa. Y lo mismo se puede decir de algo que está siendo destruido o que ha sido destruido; porque tanto en lo que está llegando a ser como en lo que se está destruyendo 15 hay inmediatamente presente una cierta infinitud por el hecho de ser continuos. Así, es imposible que algo esté llegando a ser sin haber llegado a ser o que haya llegado a ser sin haber estado llegando a ser; y lo mismo en el caso de lo que se está destruyendo o se ha destruido: el haberse destruido siempre será anterior al destruirse, y el destruirse será anterior al haberse destruido. Es evidente, entonces, que lo 20 que ha llegado a ser tiene que haber estado antes llegando a ser, y que lo que está llegando a ser tiene que haber llegado a ser previamente, pues toda magnitud y todo tiempo son infinitamente divisibles. Y así, cualquiera que sea aquello en que esté la cosa (magnitud o tiempo), no se podrá encontrar en el cambio algo primero.

7 Finitud e infinitud del tiempo y de la magnitud

Puesto que todo lo que está en movimiento se mueve en el tiempo, y en un tiempo mayor una cosa recorre una magnitud mayor, es imposible que se mueva 25 con un movimiento finito en un tiempo finito, no en el sentido de que un mismo movimiento o una parte suya se repita siempre, sino en el de que la totalidad de un movimiento finito se mueva en la totalidad de un tiempo infinito.
Es evidente que si algo se mueve con una velocidad uniforme tendrá que moverse sobre una magnitud finita en un tiempo finito. Porque, si tomamos una parte que sea la medida del todo, la cosa se habrá movido sobre la totalidad de la magnitud en tantos intervalos de tiempo como partes haya. Y así, puesto que estas partes son finitas, tanto individualmente 30 en cantidad como colectivamente en número, el tiempo tendrá que ser también finito; pues este tiempo será igual al tiempo ocupado en recorrer cada parte multiplicado por el número de las partes.
Pero tampoco hay ninguna diferencia en el caso de que la velocidad no sea uniforme. Supongamos que sobre una distancia finita AB una cosa se haya movido durante un 35 tiempo infinito, y que sea cd este tiempo infinito. Entonces, 238a como una parte de esa distancia tendrá que haber sido recorrida antes que la otra (pues es claro que una habrá sido recorrida en la parte anterior del tiempo y la otra en la parte posterior; porque en un tiempo mayor se habría recorrido otra parte distinta, sea o no uniforme la velocidad del movimiento, ya que no hay ninguna diferencia si su velocidad 5 aumenta, disminuye o permanece uniforme), tomemos una parte de la distancia AB, digamos AE, que será la medida de AB. Esta parte será recorrida entonces en una parte del tiempo infinito; no puede ser recorrida en un tiempo infinito, ya que estamos suponiendo que éste es ocupado para recorrer el todo AB. Y si tomamos una segunda parte igual a AE, esta parte también tendrá que ser recorrida en un 10 tiempo finito, ya que sólo la distancia total se recorre en un tiempo infinito. Y si continuamos así tomando partes, puesto que no hay ninguna parte del tiempo infinito que pueda medir al tiempo infinito (pues el infinito no puede esta compuesto de partes finitas, sean iguales o desiguales, ya que si fuesen finitas en número y en magnitud serían 15 medidas por una de ellas tomada como unidad y, tanto si fuesen iguales como desiguales, serían limitadas en magnitud), y puesto que la distancia finita (AB) sería medida por la cantidad de AE, entonces la distancia AB tendrá que ser recorrida en un tiempo finito. Y lo mismo se puede decir sobre el llegar a estar en reposo. Así, es imposible que una y la misma cosa esté siempre en proceso de llegar a ser o de ser destruida.
20 Por la misma razón, no puede haber un proceso infinito de movimiento o reposo durante un tiempo finito, tanto si el movimiento es uniforme como si no lo es. Porque si tomamos una parte del tiempo que sea la medida del tiempo total, durante esa parte se habrá recorrido alguna cantidad de la magnitud y no la magnitud total, ya que hemos supuesto que sólo en el tiempo total se la recorre en su totalidad; y si tomamos de nuevo otra parte igual de tiempo se recorrerá 25 otra parte de la magnitud, y de la misma manera en otra parte igual del tiempo que se tome, sea que se recorra una magnitud igual a la primera magnitud recorrida o no, pues no hay diferencia con tal que cada una sea finita. Es manifiesto, entonces, que aunque el tiempo se pudiera agotar por sustracción de sus partes, la magnitud infinita no se podrá agotar jamás por esta vía, ya que el proceso de sustracción es finito, tanto con respecto a la cantidad como al número de veces que se haga la sustracción. Por consiguiente, una magnitud infinita no puede ser recorrida en un tiempo finito; 30 y no hay diferencia si la magnitud es infinita en una sola dirección o en ambas, pues el razonamiento será el mismo.
Demostrado esto, es también evidente que una magnitud infinita no puede ser recorrida por una magnitud finita en un tiempo finito. La razón es la misma: en una parte del tiempo recorrerá una magnitud finita, y de la misma manera en cada otra parte del tiempo que se tome; por consiguiente, 35 en el tiempo total habrá recorrido una magnitud finita.
Y puesto que algo finito no puede recorrer una magnitud infinita en un tiempo finito, es evidente que tampoco 238b algo infinito podrá recorrer una magnitud finita en un tiempo finito; porque si lo infinito pudiese recorrer una magnitud finita <en un tiempo finito, también algo finito podría recorrer la magnitud infinita <en un tiempo finito>, pues no hay diferencia en cuál de los dos sea el que se mueve, ya que en ambos casos lo finito recorrería lo infinito. Porque 5 cuando la magnitud infinita A se mueve, una parte finita suya, digamos CD, recorrerá (la magnitud finita) B, y luego otra y otra, y así indefinidamente. Se seguiría, entonces, que lo infinito habría recorrido lo finito y al mismo tiempo lo finito habría recorrido lo infinito. Porque, al parecer, lo infinito sólo podrá recorrer lo finito si lo finito puede recorrer lo infinito, bien por desplazamiento o bien por mensuración. 10 Pero como esto es imposible, lo infinito no puede recorrer una magnitud finita.
Pero tampoco una magnitud infinita puede recorrer una magnitud infinita en un tiempo finito, pues si pudiese recorrerla, 15  podría recorrer también una magnitud finita, ya que lo finito está comprendido en lo infinito. Y si se supone un tiempo infinito la demostración será la misma.
Y puesto que en un tiempo finito lo finito no puede recorrer lo infinito, ni lo infinito lo finito, ni tampoco lo infinito lo infinito, es evidente que en un tiempo finito no 20 puede haber un movimiento infinito. Pues ¿qué diferencia habría si supusiéramos como infinito un movimiento o una magnitud? Si uno de los dos fuese infinito, también tendría que serlo el otro, pues todo desplazamiento es en un lugar.

8 Dificultades sobre el detenerse y el reposar

Puesto que todo lo que está naturalmente en movimiento o en reposo se mueve o está en reposo cuando, donde y como naturalmente lo hace, entonces lo que se está deteniendo tiene que estar en 25 movimiento cuando se está deteniendo; porque si no estuviese en movimiento tendría que estar en reposo, pero no podría llegar a estar en reposo lo que ya lo está. Demostrado esto, es también evidente que el detenerse tiene que producirse en el tiempo; pues lo que está en movimiento se mueve en el tiempo, y ya se ha indicado que lo que se está deteniendo está en movimiento, por lo que tiene que detenerse en el tiempo. Además, si cuando hablamos de «más rápido» 30 o «más lento» lo hacemos con respecto al tiempo, entonces también el proceso de estar deteniéndose puede ser más rápido o más lento.
Y, por otra parte, lo que se está deteniendo tiene que detenerse en alguna parte del tiempo primero en el que llega a detenerse. Porque, si el tiempo fuese dividido en dos partes, si no llegase a detenerse en ninguna de las dos no se podría detener en el tiempo total, de lo que resultaría que lo que se está deteniendo no se detendría. Y si llegase a detenerse sólo en una de las dos partes del tiempo, no se detendría en el todo como el tiempo primero, pues llegaría a detenerse en éste según una de las partes, como se ha dicho 35 antes con respecto a lo que está en movimiento.
Y así como no hay un primer tiempo en el cual se mueva lo que está en movimiento, tampoco hay un primer tiempo 239a en el cual se detenga lo que se está deteniendo, pues no hay un tiempo primero en lo que está en movimiento ni en lo que está deteniéndose. Así, supongamos que AB fuese el primer tiempo en el que una cosa se detiene. Entonces AB no podrá carecer de partes, ya que no puede haber movimiento en lo que carece de partes, por lo que algo de lo que 5 está en movimiento se habrá ya movido (en una parte de ese tiempo), y ya se ha mostrado que lo que está deteniéndose está en movimiento. Pero si AB es divisible, la detención se hará en alguna de las partes de AB, pues hemos mostrado antes que se está deteniendo en cada una de las partes del tiempo primero en el que se detiene. Así, puesto que hay un tiempo en el cual una cosa llega primariamente a detenerse, y este tiempo no es indivisible, ya que todo tiempo puede 10 ser dividido en un número infinito de partes, no puede haber entonces un tiempo primero en el proceso de llegar a detenerse.
Ni tampoco hay un primer tiempo en el cual lo que está reposando llegó a estar en reposo, porque no puede haber llegado a estar en reposo en lo que no tiene partes, ya que en algo indivisible no hay movimiento, y aquello en lo que puede haber movimiento es también aquello en lo que puede haber reposo, pues ya hemos dicho que el reposo es el estado de una cosa a la que es connatural el movimiento, pero que no se mueve cuando y en aquello en que naturalmente u podría estar en movimiento. Y dijimos también que algo está en reposo cuando se encuentra ahora en el mismo estado en que estaba antes, de tal manera que no se lo puede determinar por referencia a un momento, sino por lo menos a dos; luego aquello en lo que algo está en reposo no puede carecer de partes. Pero si es divisible, tendrá que ser un período de tiempo y la cosa estará reposando en cada una de sus partes, como puede mostrarse de la misma manera que en los casos precedentes. Por consiguiente, no puede haber 20 una primera parte del tiempo en la cual llegó a estar en reposo. La razón de esto está en el hecho de que todo lo que está en reposo o en movimiento está en el tiempo, y no hay una primera parte del tiempo ni de una magnitud ni en general de algo continuo, pues todo continuo es infinitamente divisible.
Y puesto que todo lo que está en movimiento se mueve en el tiempo y cambia de algo a algo, es imposible que en este tiempo, tomado en sí mismo y no según una de sus 25 partes, lo que está en movimiento se mueva con respecto a algo primero. Pues el estar en reposo es un estar en lo mismo durante un cierto tiempo, tanto la cosa misma como cada una de sus partes. Y así decimos que una cosa está en reposo cuando en uno y otro momento se puede decir con verdad que está en un mismo lugar, la cosa misma y sus partes. Y si esto es estar en reposo, es imposible que algo 30 que cambie esté como un todo sobre una cosa particular en el tiempo en que primariamente cambia; pues como todo tiempo es divisible, se podrá decir con verdad que en una y otra parte de ese intervalo la misma cosa y sus partes estarán en el mismo lugar. Porque si no fuera así y la cosa sólo estuviese en un «ahora» (no en el intervalo entre dos «ahoras»), entonces no estaría en el mismo lugar en ninguna parte del tiempo, sino sólo en un límite del tiempo. Así, 35 aunque en el «ahora» la cosa esté siempre respecto de algo, no está sin embargo en reposo, pues en un «ahora» no puede 239b haber movimiento ni reposo; pero aunque sea verdad que en el «ahora» no hay movimiento sino sólo un estar respecto de algo, no es posible que una cosa esté en reposo con respecto a algo durante el tiempo de su cambio, porque si así fuera se seguiría que lo que está en movimiento estaría en reposo.

9 Falacias de la indivisibilidad Refutación de Zenón

5 Zenón cae en un paralogismo cuando dice: si siempre todo lo que está en algún lugar igual a sí mismo está en reposo, y si lo que se desplaza está siempre en un «ahora» entonces la flecha que vuela está inmóvil. Esto es falso, pues el tiempo no esta compuesto de «ahoras» indivisibles, como tampoco ninguna otra magnitud está compuesta de indivisibles.
Zenón formuló cuatro supuestos sobre el movimiento 10 que han producido gran perplejidad en cuantos han intentado resolverlos. Según el primero el movimiento es imposible, porque lo que se moviese tendría que llegar a la mitad antes de llegar al término final. Ya lo hemos discutido antes.
El segundo argumento, conocido como «Aquiles», es éste: el corredor más lento nunca podrá ser alcanzado por el 15 más veloz, pues el perseguidor tendría que llegar primero al punto desde donde partió el perseguido, de tal manera que el corredor más lento mantendrá siempre la delantera. Este argumento es el mismo que el dicotómico, aunque con la diferencia de que las magnitudes sucesivamente tomadas no 20 son divididas en dos. La conclusión es que el corredor más lento nunca será alcanzado y el procedimiento es el mismo que el del argumento por dicotomía (pues en ambos casos se concluye que no se puede llegar al límite si se divide la magnitud de cierta manera, aunque en éste se añade que incluso el corredor más veloz según la tradición tiene que 25 fracasar en su persecución del que es más lento); por tanto la refutación tendrá que ser la misma en ambos casos. En cuanto al segundo, es falso pensar que el que va delante no puede ser alcanzado; ciertamente, no será alcanzado mientras vaya delante, pero será alcanzado si se admite que la distancia a recorrer es finita. Tales son los dos primeros argumentos.
30 El tercero, ya mencionado antes, pretende que la flecha que vuela está detenida. Esta conclusión sólo se sigue si se admite que el tiempo está compuesto de «ahoras», pero si no se lo admite la conclusión no se sigue.
El cuarto argumento supone dos series contrapuestas de cuerpos de igual número y magnitud, dispuestos desde uno y otro de los extremos de un estadio hacia su punto 35 medio, y que se mueven en dirección contraria a la misma velocidad. Este argumento, piensa Zenón, lleva a la conclusión de que la mitad de un tiempo es igual al doble de ese 240a tiempo. El paralogismo está en pensar que un cuerpo ocupa un tiempo igual en pasar con igual velocidad a un cuerpo que está en movimiento y a otro de igual magnitud que está en reposo; pero esto es falso. Por ejemplo, sean AAAA cuerpos en reposo de igual magnitud, BBBB cuerpos en 5 movimiento de igual número y magnitud que los AAAA y que parten desde un extremo de los AAAA, y sean CCCC cuerpos en movimiento iguales en número, magnitud y velocidad que los BBBB y que parten desde el otro extremo. Se siguen entonces tres consecuencias. En primer lugar, cuando los BBBB y los CCCC se crucen entre sí, el primer 10 Β habrá alcanzado al último C en el mismo momento en que el primer C haya alcanzado al último B. En segundo lugar, como en ese momento el primer C habrá pasado a todos los Β pero sólo a la mitad de los A, su tiempo en pasar a la mitad de los A será la mitad del tiempo ocupado para pasar a todos los B, ya que el primer C (dice Zenón) tendrá que ocupar un tiempo igual para pasar a cada uno de los B que para pasar a cada uno de los A. En tercer lugar, en ese mismo tiempo todos los B habrán pasado a todos los C; porque, como el primer C ocupa el mismo tiempo para pasar a cada 15 uno de los A y a cada uno de los B (así dice Zenón), el primer C y el primer B alcanzarán simultáneamente los extremos del estadio, ya que cada uno de ellos ocupa un tiempo igual para pasar a cada uno de los A. Éste es el argumento. Su conclusión, sin embargo, se apoya en la falacia que hemos indicado.
Tampoco en el caso de un cambio por contradicción 20 nos encontramos ante una dificultad insuperable. Así, por ejemplo, si una cosa está cambiando del no-blanco al blanco, pero no es todavía ni uno ni otro, no será entonces ni blanca ni no-blanca. Porque, aunque la cosa no sea todavía enteramente de una u otra condición, nada nos impide que la llamemos «blanca» o «no blanca», ya que llamamos así a algo no porque lo sea enteramente, sino porque lo es en la mayoría de sus partes o en sus principales partes; no estar 25 en un determinado estado no es lo mismo que no estar enteramente en él. Y de la misma manera si se trata de un cambio que tiene como extremo el ser y el no-ser o cualquiera otro par de contradictorios: la cosa que cambia tiene que estar en uno u otro de los opuestos, aunque no se requiere que esté enteramente en uno o en otro.
Y en el caso de un círculo o de una esfera en rotación, o en general de algo que se mueva sobre sí mismo, no se puede 30 decir que estén reposando sobre sí mismos porque la cosa y sus partes están durante algún tiempo en el mismo lugar, y por lo tanto que estén a la vez en reposo y en movimiento. Pues, en primer lugar, sus partes no están en el mismo lugar durante algún tiempo, y, en segundo lugar, 240b también el todo está siempre cambiando de una posición a otra; porque la circunferencia que parte de A no es la misma que la que parte de Β o C o de cualquier otro punto, salvo accidentalmente, como el hombre músico es siempre hombre. Así pues, la circunferencia estará siempre cambiando 5 de una a otra posición y jamás estará en reposo. Y lo mismo ocurrirá con la esfera en rotación y con cualquier otra cosa que se mueva sobre sí misma.

10 Imposibilidad de movimiento de lo indivisible

Demostrado lo anterior, afirmamos ahora que lo que no tiene partes no puede estar en movimiento si no es por accidente, esto es, sólo en tanto que es una 10 parte de un cuerpo o una magnitud en movimiento, como cuando lo que está en un barco se mueve por el desplazamiento del barco o la parte por el desplazamiento del todo. (Entiendo por «lo que no tiene partes» lo que es cuantitavamente indivisible. Pues los movimientos de las partes son distintos según se las considere con respecto a sí mismas o con respecto al movimiento de todo. Esta diferencia 15 se puede observar con claridad en el caso de la rotación de la esfera, pues las partes próximas al centro no se mueven a la misma velocidad que las partes próximas a la superficie o que la esfera total, como si el movimiento no tuviese unidad.)
Así pues, como hemos dicho, lo que no tiene partes sólo puede estar en movimiento como el que está sentado en un barco está en movimiento cuando el barco navega, pero no 20 puede estarlo por sí mismo. Pues supongamos que lo que no tiene partes está cambiando de AB a BC —sea una magnitud a otra, o de una forma a otra, o de algo a su contradictorio—, y que D sea el tiempo primero en el que ha cambia do. Entonces, durante el tiempo en el que esté cambiando tendrá que estar en AB o en BC o parcialmente en uno y parcialmente en el otro (pues, como hemos dicho, todo lo 25 que cambia lo hace de esta manera). Pero no puede estar parcialmente en cada uno de los términos, porque entonces sería divisible en partes. Tampoco puede estar en BC, porque entonces habría completado el cambio lo que hemos supuesto que está cambiando. Por tanto sólo puede estar en AB durante el tiempo en que esté cambiando. Pero entonces estaría en reposo; porque, como hemos mostrado, lo que 30 está en el mismo estado durante un cierto tiempo está en reposo. Por consiguiente, lo que no tiene partes no puede estar en movimiento ni en general estar cambiando. Sólo hay una manera en que sería posible su movimiento, a saber: que el tiempo estuviese compuesto de «ahoras», en cuyo caso completaría en cada «ahora» un movimiento o cambio, de suerte que jamás estaría en el proceso de estar moviéndose, 241a sino siempre en la condición de haberse movido. Pero ya hemos mostrado antes que esto es imposible, porque el tiempo no está compuesto de «ahoras», ni una línea de puntos, ni tampoco un movimiento en acto de movimientos ya cumplidos; pues quien afirme lo anterior no hace sino 5 suponer que el movimiento está compuesto de átomos de movimiento, como si el tiempo estuviera compuesto de «ahoras» o la magnitud de puntos.
Además, el argumento que sigue muestra también con evidencia que no puede haber movimiento de un punto ni de nada que sea indivisible. Todo lo que está en movimiento no puede moverse sobre una magnitud mayor que sí mismo antes de haberlo hecho sobre otra igual o menor que sí mismo. Si esto es así, es evidente que también un punto 10 tendría que moverse primero sobre algo igual o menor que sí mismo. Pero como es indivisible, no puede moverse primero sobre algo menor que sí mismo; luego tendrá que moverse sobre algo que sea igual a sí mismo. Una línea estaría entonces compuesta de puntos, ya que al continuar moviéndose sobre una y otra parte iguales a sí mismo el punto sería la medida de la línea total. Pero, como esto es imposible, es imposible que lo indivisible se mueva. 15 Además, si todo se mueve en el tiempo, pero nunca en un «ahora», y si todo tiempo es divisible, para toda cosa que esté en movimiento tendrá que haber un tiempo menor que el tiempo ocupado para moverse sobre una distancia igual a sí mismo (pues este tiempo menor será el intervalo de tiempo en el que tiene lugar el movimiento, porque todo lo que está en movimiento lo hace en el tiempo y ya hemos mostrado que todo tiempo es divisible). Luego, si un punto se moviese, tendría que haber un tiempo menor que el tiempo 20 en el cual se hubiese movido <sobre algo igual a sí mismo. Pero esto es imposible, ya que en un tiempo menor necesariamente tendría que haberse movido sobre algo menor que sí mismo, y entonces lo indivisible sería divisible en algo más pequeño que sí mismo, así como el tiempo es divisible en tiempos más pequeños. Porque sólo hay una manera en que podría moverse lo que no tiene partes y es indivisible, a saber: que se pudiera mover en un «ahora» indivisible; pues el argumento es el mismo cuando se supone que hay movimiento 25 en un «ahora» y cuando se supone que hay movimiento de algo indivisible.
No hay ningún cambio que sea ilimitado; pues todo cambio, sea entre contradictorios o entre contrarios, es un cambio de algo a algo. Así, en los cambios entre contradictorios sus límites son la afirmación y la negación; por ejemplo, en la generación, el límite es el ser y en la destrucción, el no ser; pero en los cambios entre contrarios ca- 3o da uno de los contrarios es un límite, pues son los extremos del cambio. Y también la alteración tiene límites, pues toda alteración procede de una cualidad contraria a otra. Y de la misma manera en el caso del aumento y la disminución, 241b pues el límite del aumento es la magnitud extrema de una cosa según su naturaleza propia y el límite de la disminución es la pérdida de esa magnitud.
El desplazamiento no es limitado de esta manera, pues no todo desplazamiento es entre contrarios. Pero, así como lo que es imposible que sea cortado es tal porque no permite ser cortado (pues «imposible» se dice en varios 5 sentidos), y no permite que sea cortado lo que no puede ser cortado y, en general, que esté llegando a ser lo que es imposible que llegue a ser, así también lo que no puede completar un cambio es incapaz de estar cambiando hacia aquello que es imposible que cambie. Por lo tanto, si lo que se está desplazando está cambiando hacia algún lugar, entonces tendrá la posibilidad de completar el cambio. Luego su 10 movimiento no es ilimitado, ni puede desplazarse sobre una distancia ilimitada, pues es imposible que recorra tal distancia.
Es, pues, evidente que un cambio no puede ser ilimitado en el sentido de que no tenga límites que lo determinen.

Queda por considerar si puede haber algún cambio, uno e idéntico, que sea infinito con respecto al tiempo. Si el cambio no tuviese unidad, nada impediría que fuese infinito 15 en este sentido, por ejemplo, si después de un movimiento local hubiese una alteración, y después de la alteración un aumento, y después una generación, y así sucesivamente, pues si así fuese habría siempre un movimiento con respecto al tiempo. Pero tal movimiento no sería uno, ya que no tiene unidad lo que resulta compuesto de todos esos cambios. Si ha de ser uno, ningún movimiento puede ser infinito con 20 respecto al tiempo, con una sola excepción: el movimiento circular.

No hay comentarios :

Publicar un comentario

LinkWithing

Related Posts Plugin for WordPress, Blogger...